

Cranfield Hydrogen
Integration Incubator (CH2i)

Hydrogen's Benefits and Challenges as Global Energy Vector

Jon Horsley, CH2i Programme Manager

j.horsley@cranfield.ac.uk

April 2025

Why all the fuss now about Hydrogen as a fuel?

- Climate change and Sustainability: The need to stop burning Fossil Fuels for heat and transport
- There's a lot of Hydrogen about!
- Totally renewable, Globally producable, Constant and Natural
- No direct emissions (burning in air produces some NOx)
- No "fuel standards" required

So why not go all-in for Hydrogen?

- There is no "Energy Shortage"!
- The cost & impact of accessing clean energy ...
- ... and the storage / conversion of captured renewable energy to perform work
- Forms of H2:
 - Gaseous Super buoyant, highly explosive
 - Compressed to 350, 700 or even 1000bar
 - Liquid 20DegK
- Challenges with H2:
 - Energy cost of production: GH2 -> LH2
 - Tricky to store and transport (LH2 in particular)
 - Low energy density in gaseous form
 - LH2 boil off, GH2 leaks & embrittlement
 - And the Hazardous Challenges of H2 in quantity

Hydrogen versus other energy storage vectors

So where will Hydrogen fit into our future?

Horses for Courses

Batteries

- + Known technology, easy to use, clean in use
- Env' impact (manf') and EOL (recycling)

Sustainable fuels ("Bio" Petrol & Diesel)

- + Minimal infrastructure & engine changes
- Land use concerns, Emissions

Hydrogen

- + Can be made locally and in many ways
- + Used in ICE, fuel-cells, turbines
- Energy density, handling
- Infrastructure

Good fits for Hydrogen

Automotive

- Large vehicles, where batteries won't work
- Back-to-base vehicles, served by a refueller

Aviation

- Small/regional aircraft with GH2 and fuel-cells
- Medium-range aircraft

Marine

- As Ammonia or H2 directly
- Globally consistent fuel

Today 2028 2030 2035 2040 2050

Image courtesy of

Lufthansa Technik

Hydro-Lab

Sustainable Aviation = Protecting the Environment + the Economy

Decarbonise Aviation and Minimise Non-CO₂ Emissions!

Abbreviations

Electr: Electric FC: Fuel Cells GTs: Gas Turbines

Hy Propulsion: Hybrid Propulsion
LNG: Liquefied Natural Gas
LTO: Landing and Take-Off Cycle

RPK: Revenue per Passenger Kilometre

Hydrogen hazards and related R&D

Accidental releases

- Pressurised force (compressed gas)
- Explosive shock waves and heat
- Invisible flame when burning
- Gas will rise (once it's stopped travelling in the direction of the release), but
- Liquid will pool, boil (creating pressure), not rise whilst cold, then eventually rise
 - Fire and heating effects of this phase change

Other hazards

- Combined on a site with other hazardous substances (COMAH)
- Hazards of cryogenic liquids

Groups working on H&S

- HSE, Buxton
- DNV, Cumbria
 Plus universities, etc
- JAXA, NASA
- DLR, Germany

Modelling LH2 releases from an aircraft

Aircraft Fuel Spill Pool Fires (top) and Radiative heat Flux on Surfaces (below) (ENABLEH2 and ZEST1)

Hydrogen and sustainable fuels research at Cranfield

Overview of CH2i

- Largest ever research funding win for Cranfield University (£69m)
- Investment heralds a 'step change' in H₂ research, developing the first large scale H₂ research hub at any UK airport
- Funding will unlock technical challenges and scale-up H₂-enabled aviation to help meet net zero emissions targets

Enabling H₂ Innovation:

Hydrogen Integration Research Centre (HIRC)

Enabling H₂ Systems Integration:

Investment in CU's H₂ gas turbine and fuel system testbed

Enabling "Jet Zero":

Investment in our Global Research
Airport

Summary

- Hydrogen is coming into all aspects of our lives, particularly transport and industrial processes
- Although it's been used by industry for many decades, these new uses present new challenges and hazards, but also ...
- ... New business opportunities in Materials, Structures, Infrastructure, Handling, Sensing, and many more areas
- A New (Industrial) Revolution!

Image courtesy of Lufthansa Technik Hydro-Lab

12

Cranfield Hydrogen
Integration Incubator (CH2i)

Thank you! Any Questions?

Jon Horsley, CH2i Programme Manager

j.horsley@cranfield.ac.uk

April 2025